
Группа учёных из университета Рочестера (University of Rochester) и Швейцарского федерального технологического института (Swiss Federal Institute of Technology, ETH), в которую вошли специалисты в области материаловедения и оптики, создали опытные образцы цепей, состоящих из серебряных нанопроводников и пластин двухмерного материала, дисульфида молибдена (MoS2). Такая комбинация материалов позволяет цепи эффективно проводить одновременно электричество и свет вдоль одного крошечного нанопроводника, что в будущем может быть использовано при создании процессоров нового поколения, способных обрабатывать и передавать информацию со скоростью света.
Структура такой простейшей цепи представлена на рисунке. На свободном конце серебряного нанопроводника сфокусирован свет лазера, который возбуждает на поверхности металла особый вид электромагнитных колебаний – облака свободных электронов, называемых плазмонами. При этом учёные обнаружили, что пластина MoS2, расположенная на другом конце нанопроводника, тут же начинает излучать яркий свет, длина волны которого совпадает с длиной волны света лазера.
Заинтересовавшись этим явлением, учёные изучили происходящие там процессы и выяснили, что перенос энергии через нанопроводник в данном случае осуществляется возбужденными электронами, облако из которых и представляет собой плазмон. Когда эти плазмоны перемещаются по поверхности нанопроводника, они распадаются, электроны сбрасывают излишки своей энергии и проходят через серебряный нанопроводник дальше в виде электрического тока. В районе пластины MoS2 энергия добравшихся туда плазмонов и электронов преобразуется в энергию излучаемых фотонов света, проходя через промежуточный этап формирования и распада экситонов – квазичастиц, состоящих из связанных свободного электрона и электронной дырки в полупроводнике.
Следует отметить, что данное явление становится возможным лишь благодаря тому, что дисульфид молибдена является материалом с явно выраженными полупроводниковыми свойствами. Наличие запрещённой зоны у этого материала позволяет преобразовать энергию электронов сначала в энергию экситонов, а затем и в энергию фотонов. Если вместо пластины MoS2 использовать пластину графена, то эффект переноса света работать не будет, так как у графена отсутствует запрещённая зона.
При переносе энергии движущимися по нанопроводнику плазмонами не обходится без потерь, в ходе экспериментов учёные выяснили, что при переносе энергии на два-три микрона (миллионных долей метра) теряется до третей части от изначального количества энергии. Тем не менее, в масштабах нанометровых расстояний кристаллов фотонно-электронных чипов такие потери будут очень малы и их наличие не будет играть большой роли.
В заключение следует заметить, что фотоэлектрические приборы и устройства могут работать намного быстрее и тратить при этом меньше энергии, нежели аналогичные электронные устройства. Но узлы фотоэлектрических устройств, выполняющие фокусировку света и другие функции, не могут быть миниатюризированы до уровня их использования на кристаллах чипов. Эта проблема как раз и может быть решена при помощи нанопроводников, дисульфида молибдена, из которых можно будет изготавливать фотоэлектрические цепи, более сложные, чем цепь, использовавшаяся учёными в первых экспериментах для передачи света.
Следующими шагами, которые намерены предпринять учёные, будет создание сложных фотоэлектрических схем из нанопроводниковых цепей, в которые будут включены собственные светодиодные источники света. Эти схемы будут играть роль логических элементов, выполняющих определенные логические и арифметические действия, которые, как известно, являются базовыми элементами всей современной цифровой техники.
Dailytechinfo.org со ссылкой на Rdmag.com
Комментарии